
* - -

Prepared by:

Academic Rank:

University and Department:

1988

NASA/ASEE Summer Faculty Fellowship Program

Marshall Space Flight Center
The University of Alabama

Development of a Prototype Commonality Analysis Tool
for use in Space Programs

Dorian P. Yeager

Associate Professor

The University of Alabama
Computer Science

0 NASA/MSFC:

Laboratory:

Division:
Branch:

NASA Colleague:

Date :

Contract No.

XXXI

Systems Analysis and

Space Station Systems
Systems Integration

Integration

L. Dale Thomas

August 12, 1988

The University of Alabama
NGT-01-002-099

ABSTRACT

A software tool to aid in performing commonality analyses,
called Commonality Analysis Problem Solver (CAPS), was
designed, and a prototype version (CAPS 1.0) was implemented
and tested. CAPS 1.0 runs in an MS-DOS or IBM PC-DOS
environment. CAPS is designed around a simple input language
which provides a natural syntax for the description of
feasibility constraints. It provides its users with the
ability to load a database representing a set of design items,
describe the feasibility constraints on items in that database,
and do a comprehensive cost analysis to find the most
economical substitution pattern.

ACKNOWLEDGMENTS

The author wishes to thank NASA and ASEE for their support of a
fine program.
rewarding.
for their capable administration and their personal involvement
in the program.

My experiences here have been extremely
Thanks also to Mike Freeman and Ernestine Cothran

Special thanks go to my NASA colleague, L. Dale Thomas, without
whose help the fundamental nature of the problem would not have
been evident.

Thanks go also to Charlie Cothran and the crew at EL83, now
EJ12, who again made me feel very much at home and provided a
pleasant and productive work environment.

INTRODUCTION AND OBJECTIVES

Commonality is an attribute of large systems. A system is
said to incorporate a high level of commonality if there are
few instances where functionally similar but unique designs are
incorporated into the system, and component parts are designed
with a high level of functionality, so that each separately
designed component may be employed in multiple positions within
the system.

Commonality Analysis is a process, as yet only rather
poorly defined, for assessing the level of commonality in the
design of a large system and, if necessary, making
recommendations for increasing that level of commonality. The
major considerations in making such recommendations are of
necessity economic ones, and it must be true in some sense that
the system will be more cost-effective if the recommended
changes are made.

An automatic tool for structuring the commonality analysis
process will always fall short of the goal of providing a
comprehensive framework. There may indeed be more art than
science involved in the process. A good tool is very @ definitely needed, nonetheless. A first step in the direction
of providing such a tool is represented by the SCAT program
developed under Work Package 1 (see MSFC 1987). An assessment
of the benefits and drawbacks of that program is given in last
year's report, along with recommendations for improvement.
Some of those recommendations are now being incorporzted into
SCAT.

This report describes an alternative approach to
commonality analysis. The Commonality Analysis Problem Solver,
or CAPS, is conceived as a software tool with two major
features: (1) more intelligent algorithms for investigating
substitution strategies, and (2) a language for precisely
describing substitution constraints.
suggested the CAPS algorithms was discovered by the author
during his 1987 tenure as a Summer Faculty Fellow. The design
and implementation of the CAPS language was the purpose of
this year's work, and its description is the subject of this
report.

The mathematics which

XXXI- 1

CAPS 1.0

CAPS 1.0 is a demonstration prototype consisting of about
2800 lines of C code developed in a four-week period. Some
limitations were imposed by the short development time.
Notable among these limitations are the restriction to numeric
data fields only, the rather simplified input data file format,
and the inability to short-circuit prohibitively long cost
analyses. The last-mentioned drawback derives from CAPS 1.0's
insistence on providing the absolute optimum solution, no
matter what the cost in computation time. Future development
of CAPS will give it the intelligence to choose and apply a
suboptimal solution strategy when such a strategy is indicated.
Future releases will also extend CAPS' functionality and
improve its user interface.

DATA FILES

A CAPS 1.0 data file is organized as a series of lines of
text. The first line contains a series of field names
(attributes) applicable to records in the data base. The
syntax of field names must conform to the same constraints as
that of CAPS variable names (see below).
file is a series of records, coded as one line of text per
record. Each record consists of a series of numeric constants,
and each record must supply a value for each attribute.
form of the file is therefore exactly like a table with
headings, except no alignment conventions need be observed.
The data file is a simple ASCII text file, such as could be
constructed with any text editor, including the DOS EDLIN
editor, or with any word processor capable of exporting
documents to an ASCII file. Alternatively, a CAPS 1.0 file can
easily be generated as a report file by any relational
database. An example of a data file is given below:

The remainder of the

The

ddt&e prod weight volume
46.166 7.694 9.222 19.2
49.374 8.229 10.375 21.6
67.833 11.306 17.292 36.0
71.86 11.977 19.021 39.6
92.819 15.47 28.244 58.8
355.772 59.295 232.289 483.6
366.685 61.114 243.241 506.4
378.240 63.040 253.616 528.0
464.314 77.386 348.722 726.0

quantity
1
1
4
4
2
2
6
3
4

Table 1: Typical CAPS data file.

XXXI- 2

In the above example, there are five fields and nine records.
Note that no quote marks are used to delimit the field names.
In CAPS 1.0, no input line can be longer than 300 characters.

0

THE CAPS 1.0 USER INTERFACE

CAPS 1.0 uses a command line input scheme. When the
program initially loads, it displays the prompt:

>>

CAPS then recognizes commands typed in by the user and responds
to each command in turn by displaying (a) the value of an
expression, (b) a graph of the data set, or (c) a report of
current status or of an action taken. There are 16 input
forms, as follows:

<expression>
load <file-name>
fields
for <logical expression> allow <logical expression>
for <logical expression> disallow <logical expression>
allow all
disallow all
status
define <variable> as <expression>
add <defined variable>
graph <field-name-l> vs <field-name-2>
cost
learn <constant>
learn
take <file - name>
quit

We will discuss each of these in turn below.

The following keywords are reserved words in CAPS 1.0.
Their meanings are fixed and cannot be changed by the user,
which means that they are not available as field names in data
files nor as variable names.

abs add all allow and as cos cost
define disallow exp fields for graph int item
learn In load log not or quit sin
sqrt status take tan vs

XXXI- 3

CAPS EXPRESSIONS

The primary use for CAPS expressions is the description of
feasibility constraints for the substitution strategy in
commonality analyses. In order to describe such constraints it
must be possible to communicate any kind of relationship
between two items in a data file. Expression syntax is
essential for such communication.

CAPS expressions use standard expression syntax, like that
used in FORTRAN and BASIC. Besides the standard arithmetic,
relational, and logical operators, several essential functions
are implemented, such as sine, cosine, tangent, square root,
absolute value, and integer part.

Spaces are ignored wherever they occur in CAPS expressions,
except that spaces are not allowed in variable names or numeric
constants.

NUMERIC CONSTANTS

CAPS numeric constants may be integers or real numbers in
fixed or floating point form, and may be signed or unsigned.
Only decimal constants are allowed. Examples are as follows:

25 -340 .7 0 0.789 8.98323
345. -.001 le2 le-2 7.383-21 500000

Very few restrictions of commonly accepted syntax are
applicable.
Numbers smaller in magnitude than 1.2e-38 underflow to zero.
Precision is about seven decimal digits. CAPS does not accept
floating point constants with more than two digits in the
exponent. Thus le010 is not a valid constant, but le01 and
le10 are valid.

The range of values accepted is -3.4E38 to 3.4338.

In CAPS, all numeric quantities are represented internally
as real (floating point) numbers.

VARIABLE NAMES

CAPS variable names may be of any length, must begin with
an alphabetic character, and must consist of alphabetic
characters, decimal digits, underline characters () , and
ampersands (C) . CAPS is NOT case-sensitive. Thus-the names
VOL, Vol, v01, and VO1 all refer to the same variable.

XXXI- 4

ARITHMETIC OPERATORS

CAPS uses the FORTRAN set of arithmetic operators, with the
same meaning and the same precedence rules, given below:

Operator Precedence Meaning

+
*
/ **

Lowest Real number addition
Lowest Real number subtraction
Intermediate Real number multiplication
Intermediate Real number division
Highest Exponentiation

Since all numbers are represented internally in floating
point, an operation performed on two integers will not
necessarily yield an integer. For example, the expression 1 / 3
evaluates to 0.3333334, not 0 as it would in FORTRAN.

Exponentiation is allowed whenever it makes sense and the
result is a real number. Thus O**O is not permitted, nor is
(-1) * *0 .5 , but (- 2) * * (- 3) is permitted and yields -0.125.

The order of evaluation of operators with the same
@ precedence depends on their associativity. The associativity

of +, -, *, and / is from left to right, whereas that of ** is
from right to left.
FORTRAN. Associativity and precedence rules may be overridden
with the use of parentheses. Some examples follow:

This is exactly the convention observed by

Expression Value

25 - 12 + 2 1 5
25 - (1 2 + 2) 11
5/ 2*2 5
5 / (2 * 2) 1.25

256 2**2**3
(2 * *2) **3 64

Negation, or unary minus, is a separate operation,
different from subtraction. Its precedence is higher than that
of the additive operators + and - and lower than that of the
multiplicative operators * and /.
is allowed, but the expression 2**-2 is not valid CAPS syntax.
Parentheses are required around a negated CAPS expression which
is used as a right-hand input to any operation other than + or -. Thus in the example it is necessary to use the syntax

Thus the expression 4 + -5

2** (- 2) .

XXXI- 5

PRIMITiVE FUNCTIONS

CAPS 1.0 supports the following set of primitive functions:

Function Name Meaning

sqrt
abs
sin

tan
In
exP
109
int

cos

Square root
Absolute value
Trigonometric sine
Trigonometric cosine
Trigonometric tangent
Logarithm base e
Exponential function (eX)
Logarithm base 10
Integer part

Most of the above have the obvious meaning, but a few
explanations are needed. (1) The three trigonometric functions
take their operands in radians, not degrees. (2) CAPS
intercepts any attempts to use one of these functions with an
inappropriate argument. For example, CAPS will print its own
error message in response to sqrt(-a), and will display again
the 11>>11 input prompt. In contrast, some other types of
floating point errors, such as floating point overflow, will
not be intercepted by CAPS and will cause immediate program
termination. (3) The 'int' function returns the integer part
of a number. Examples follow:

Expression Value

int (5.7) 5
int (-5.7) -5
int (3) 3

RELATIONAL OPERATORS

The CAPS relational operators are =, <>, <, >, <=, and >=.
They are interpreted, respectively, as 'is equal to', 'is not
equal to', 'is less than', 'is greater than', 'is less than or
equal to', and 'is greater than or equal to'. The relational
operators all have lower precedence than the arithmetic
operators. Since the output of a relational expression is not
normally given in turn as input to another relational operation
(for example, 5<7<9 is not a valid CAPS expression),
associativity rules are not needed.

A CAPS relational expression always returns a value of 1 or
0, meaning true or false respectively. Thus the expressions

XXXI- 6

5<7 and -7.3~-5.9 return the value 1 and the expressions 5>=7,
8=9, 1e2<99, and 303 all return the value 0.

Parenthesized expressions are fair game for input into any
CAPS relational operation. Thus (5<7)<9 is legal and yields in
turn first 1<9, then 1, i.e. true.

BOOLEAN OPERATORS

The boolean operators are given, along with their
precedences, in the table below:

Operator Precedence

or lowest
and intermediate
not highest

The precedence rules were chosen in order to observe
standard conventions with almost universal acceptance. All
boolean operators have lower precedence than all relational
operators and all arithmetic operators. Thus

x < 3 and not y>=4 or p = q

is equivalent to
0

((x < 3) and (not (y>=4))) or (p = q)

All numeric results have a true-false interpretation. Very
simply, zero is false and all nonzero numbers are true. Thus
'8 or 0' has the value 1, or true, whereas '8 and 0' has the
value 0, or false.

EVALUATION ORDER

Evaluation order of a CAPS expression is very precisely
specified, as follows: (1) with the exception of unbound
variables used as operands of '=', all operands of an operator
are evaluated to yield a numeric value before the operation
itself is executed; and (2) the left-hand operand is always
evaluated before the right-hand operand.

VARIABLE BINDINGS AND THE ASSIGNMENT SIDE EFFECT

A CAPS variable, just like a variable in any standard
programming language, may be associated with a value. Until 0

XXXI- 7

such an association takes effect, the variable is said to be
unbound.
operator.

A variable may be bound to a value using the =

The = operator, being a relational operator, always returns
as its value the number 1 or 0, indicating a true or false
result. If one of the operands of = is an unbound variable,
two things occur. First, the value of the other operand is
computed and bound to the variable. Second, the value 1 is
returned, since as a result of the binding that has taken place
the two sides of the = operator have identical values.

Consider, for example, the expression below, in which the
variable x is initially unbound:

4 = x and x > 3

The left-hand operand of the ‘and‘ operation (i.e. 4 = x) is
first evaluated, having the dual effect of assigning 4 to x and
returning a true value. The right hand operand is then
evaluated as 4 > 3, also yielding a true value. Since both
operands are true, the ‘and’ operation also yields a true
value, and along the way x picks up its binding to the value 4.

CALCULATOR OPERATION

Besides its primary use for commonality analyses, CAPS may
be used as an interactive calculator. This feature was
included in order to allow the user to experiment with CAPS
expression evaluation to better understand its semantics.
Calculator operation is achieved when the user types in an
expression and CAPS evaluates the expression and displays its
value. Consider, for example, the following series of CAPS
inputs and responses:

>>principle = 40000
1.000000
>>rate = 0.10
1.000000
>>rate/l2 = i
1.000000
>>principle*i / (1 - (l+i) ** (- 3 6 0)) = payment
1.000000
>>payment
351.028687
>>

Notice that the first four inputs are assignments, which always
return the value 1. The last input is a single variable name,

XXXI- 8

'payment'. CAPS checks the symbol table for its current value,
and displays that value as its response.

THE SYMBOL TABLE

The central data structure internal to CAPS, used for
maintaining current variable bindings, is its symbol table.
During a CAPS interactive session, all symbols which have any
meaning to CAPS are represented in the symbol table. This
includes the keywords listed above as well as all variables
which have been used in previous commands and all field names
from the currently loaded data set.

When CAPS is initially invoked, the only symbols
represented in its symbol table are the keywords. As variables
are introduced they are stored in the symbol table along with
their bindings, if any. Once a variable is given a binding,
that binding cannot be changed until a new data file is loaded.
When a new file is loaded, the symbol table is cleared of all
symbols except for the keywords and the field names for that
file.

THE 'LOAD' COMMAND

The syntax of the load command is

load <file name>

The rules of formation for CAPS 1.0 file names are exactly like
those for CAPS variables. The DOS file name extension for CAPS
1.0 data files is always 'dat', and is provided automatically.
The user is not allowed to provide an alternate extension.
Since DOS requires that file names be limited to eight
characters, CAPS automatically truncates any excess trailing
characters from names which are longer than this limit.

CAPS' actions upon receiving a load command are to (a)
clear the symbol table of all variable bindings, (b) read the
field names from the file and install them in the symbol table
so that they may not be used for variable names, and (c) read
the data from the file into an internal table.

If during the loading of a file an error is discovered by
CAPS in the way the file is organized, CAPS displays an error
message and aborts the load process. A side effect of any load
is the clearing of the field names of the last loaded file from

XXXI- 9

the symbol table. This means that after an unsuccessful load
attempt CAPS will have no memory of the last file successfully
loaded.

When a file is successfully loaded, CAPS reports the number
of fields and the number of items of data. Following is an
example.

>>load motors
12 fields, 34 items.
Load successfully completed.
>>

LIMITATIONS: CAPS 1.0 accommodates a maximum of 75 items
and 256 fields.

THE 'FIELDS' COMMAND

The fields command requests a listing of all the field
names for the currently loaded data set. For example:

>>fields
ddt&e unitcost volume
3 fields.
>>

THE FEASIBILITY MATRIX

There are three internal data structures which CAPS uses to
reflect its current state. The first is the symbol table, and
the second is the table containing the currently loaded data
set. The third is the feasibility matrix, called alpha, which
determines which substitutions are currently permitted. Alpha
is boolean and is doubly indexed over the items in the data
set. Thus alpha. is true if item i is allowed to substitute
for item j, fals&'atherwise.

COMMANDS USED TO ALLOW AND DISALLOW SUBSTITUTIONS

After a file has been loaded containing information on the
items to be subjected to commonality analysis, it is necessary
to communicate to CAPS the allowable patterns of substitution.
This communication is achieved as follows: Initially, CAPS
assumes no substitutions are allowed. This means that the
feasibility matrix has 'true' entries only on the diagonal.
Then, using a series of 'for', 'allow all', and 'disallow all'
commands, the user modifies the feasibility matrix. When the

XXXI- 10

user has adequately described all allowable substitutions, s/he
requests a cost analysis with the 'cost' command.

0

THE 'FOR' COMMANDS

The for commands are:

for <expression> allow <expression>

and

for <expression> disallow <expression>

The first allows new substitutions. It does not, of course,
require that those substitutions be made. It simply tells the
cost analysis portion of the program that it is permitted to
consider the indicated substitutions as options when it
performs its analysis. The second form forbids the cost
analyzer to consider a given set of substitutions.

Examples :

for capacity=lO allow capacity=12
for boys-type and speeds=3 allow boys-type and (speeds=3 or

for not flammable disallow flammable
for portable disallow not portable

speeds=lO)

In the above, 'capacity', 'boys-type', 'speeds',
'flammable', and 'portable' are field names. The first
statement allows all items for which the value in the field
'capacity, is 12 to substitute for all items having the value
10 in that field. The second can be summarized rather clearly
if we think in terms of a data base representing bicycles. If
for a given bicycle in the data base the boolean field
'boys-type' is set to true and the value of 'speeds' is 3 , then
any bike used as a substitute for that bike must also be a boys
bike and must be either a 3-speed or a 10-speed.

The last two examples also involve boolean fields, but are
phrased in the negative. Example 3 says that a flammable item
may not substitute for an item with is not flammable, and
example 4 says that an item which is not portable may not
substitute for an item which is portable.

Note that disallowing substitutions has no effect until
some substitutions have first been allowed, since CAPS
initially assumes no substitutions are valid.

XXXI- 11

THE ’ALLOW ALL‘ AND ‘DISALLOW ALL‘ COMMANDS

The command ‘allow all‘ tells CAPS all substitutions are
valid, whereas ’disallow all’ clears the feasibility matrix
(except, of course, for the diagonal) and puts CAPS back in its
original state with respect to the currently loaded table.

USE OF VARIABLES

To provide as general a facility as possible for the
description of substitution constraints, two alternative kinds
of variable bindings in for statements (other than simple
bindings to numerical values) may be employed. Firstly, a
variable may be bound to a field name in the currently loaded
table, and secondly it may be bound to an expression involving
one or more field names. The example below will illustrate:

for size = x allow size >= x

This example basically says that any item of a given size may
be replaced by an item of that size or larger. The actual
procedure CAPS goes through is as follows.

Clear from the symbol table all variables having numeric
bindings.
For each item i in the table:

Bind x to the size of item i
For each item j in the table:

Allow j to substitute for i provided the size of j
is
at least x

Free x‘s binding

Consider now a second example:

for x=power/weight and x>=1.5 allow y=power/weight and y>=x

Here two variables named x and y are employed. The for
statement says that if x is ‘power’ divided by ‘weight‘ for
item i, x is at least 1.5, and y is ‘power’ divided by ‘weight‘
for item j, then j can replace i provided y is at least as
large as x. The following is an alternate formulation of the
same set of allowed substitutions, using only a single
variable :

for x=power/weight and x>=1.5 allow power/weight>=x

X X X I - 12

THE KEYWORD 'ALL'

When used in 'for' statements, the keyword 'all' refers to
all items in the currently loaded data set. For example:

for cylinders=4 allow all

allows all items in the data set to substitute for any item
having the value 4 in its 'cylinders' field.

In particular, 'for all allow all' has the same effect as
'allow all', and 'for all disallow all' has the same effect as
'disallow a l l ' .

THE 'DEFINE' COMMAND

The 'define' command has the form:

define <variable> as <expression>

This statement binds the variable to an expression, not to a
value. It allows the user to establish meanings for variables
which go beyond simple numeric bindings and which allow more
brevity and flexibility in the coding of meaningful for
statements. Also, since the for statement destroys numeric
bindings, the define statement provides a way of protecting
bindings from the effects of a 'for'.

0

Examples are as follows:

define pi as 3.1415926
define totalcost as

weight*cost-per_pound+volume*costper - cubic-foot

Note in particular the first example, where pi is bound to an
expression consisting only of the constant 3.1415926. Although
the expression will always yield that constant as its value, it
is nevertheless stored internally as an expression and is
therefore protected from the effects of for statements. A
defined variable may be used in subsequent expressions in for
statements. If the variable being defined is not defined in
terms of field names, it may be used in calculator mode. In
that case, a numerical result is computed for the variable
using the current bindings of other variables in the
expression. The following CAPS dialog will illustrate.

>>define pi as 3.141593
Definition successful.
>>define angle1 as pi/6
Definition successful.

XXXI- 13

>>sin (anglel)
0.500000

Since 'define' does not immediately evaluate the expression
provided as its second operand, but waits until the defined
variable is used in calculator mode or in a for statement, the
following is also possible.

>>define anglel as pi/6
Definition successful.
>>define pi as 3.141593
Definition successful.
>>sin(anglel)
0.500000

The for statement above can be rephrased using a define
statement, as follows:

define relgower as power/weight
for x=relgower and x>=1.5 allow relgower>=x

THE KEYWORD 'ITEM'

When used in 'define' and 'for' statements, the keyword
'item' refers to an internal counter used to number the items
in the table. Items in the table are automatically numbered
from 1 to n, where n is the total number of items in the table.
The status of 'item' is similar to that of a field name, but
its value is not explicitly coded into the table. Examples:

for item=7 allow all
for item=x allow item>x
define even as int(item/2)*2 = item

The first example allows all items to replace the seventh item
in the table. The second allows any item to be replaced by any
item following it in the table.
variable 'even' with an expression which evaluates to true if
and only if the item is numbered with an even number.

The third associates the

THE 'STATUS' COMMAND

The status command reports on the current status of the
feasibility matrix by indicating which items each el- ament of
the data set is currently allowed to substitute for.

XXXI- 14

e Example:

>>load datal
4 fields, 5 items.
Load successfully completed.
>>status
Allowable substitutions:

1 -> (1)
2 --> (2)
3 --> (3)
4 --> (4)
5 -> (5)

>>for item=x allow item>x
10 new substitutions allowed.
>>status
Allowable substitutions:

1 --> (1)
2 --> (1,2)
3 --:* (1,2,3)
4 --=. (1,2,3,4)
5 --> (1,2,3,4,5)

>>

0 HISTORY SENSITIVITY

The user of CAPS should always be aware that the purpose of
a single for command is to augment or restrict the set of
allowable substitutions, not to make an isolated declaration.
CAPS is designed to communicate these allowed substitutions via
a series of history-sensitive operations, the results of which
are recorded in the feasibility matrix alpha.

Consider the following set of commands, involving valves:

define re1 diff as abs(diameter-x)/x
for diamet&=x allow rel-diff < 0.05
for gas disallow liquid

The effect of the above is radically different from the
following:

for gas disallow liquid
define re1 diff as abs(diameter-x)/x
for diamet&=x allow re1 - diff < 0.05

Note that the only difference in the two sets of commands is
the order in which the commands were given. But because of the
history-sensitive nature of CAPS, the results are quite
different.
allowed to substitute for a gas valve. But in the second

In the first example no liquid valve will be

XXXI- 15

example two valves whose diameters differ by 5% or less will be
allowed to substitute one for the other, regardless of whether
they are liquid or gas valves.

THE 'ADD' COMMAND

The add command is used for adding new fields to a loaded
data set. A variable may be used to add such a field only if
it was bound using a 'define' statement. An example follows:

add relgower

Here the variable relgower is added as a new field.
mechanics of this process are simple - the size of the internal
table used to hold the data is increased by one column, and
data is placed in that column by stepping through the table and
computing the value of the expression associated with relgower
for each data item in the table.

The

Note that the variable is now no longer associated with the
expression. It has become a field name. In database terms it
is a derived attribute based on the values of other attributes,
or fields.

There are three reasons for converting defined variables
into field names with the 'add' command. The first is
increased speed of execution of 'for' commands. If a defined
variable is used in the second operand of a for statement on a
table with 30 elements, then the expression associated with
that variable will be evaluated 900 times.
evaluation is much more expensive than table lookup, and
installing the variable as a derived attribute requires only 30
evaluations of the expression.
new fields is to be able to use those fields in graphs (see
below).
for a cost analysis.

Expression

The second reason for adding

The third reason is to provide necessary parameters

THE 'GRAPH' COMMAND

The graph command allows the user to take graphic snapshots
of the data. CAPS 1.0 uses the text screen to provide a
low-resolution graph of the data set. Two field names are
supplied as parameters for the purpose of labelling the
horizontal and vertical axes. An example follows.

XXXI- 16

>>graph firstprd vs quantity # quantity

11.31

7.88

4.44

1 1

1 1

1
1

1 1

11

2 1

f irstprd

In the example, there are t w o items having quantity = 1 and
having a value for firstprd between 17.73 and 59.42. There are
five with quantity between 2 and 4 and firstprd between 101.12
and 142.81. CAPS 1.0 displays a digit between 1 and 9 in a
given position if there are fewer than ten items falling into
that position of the graph.
points, CAPS displays an asterisk (*) in that position.

If there are more than 9 data

THE 'COST' COMMAND

The cost command requests a cost analysis. In ordei- for a
meaningful cost analysis to be conducted, CAPS must have been
supplied with a loaded data set containing one of the following
sets of attributes:

1. ddtte, quantity, unitcost, and firstprd.
2. ddt&e, quantity, and firstprd.
3. ddt&e, quantity, and unitcost.

CAPS must also have been supplied with a valid feasibility
matrix via a series of 'for', 'allow all', and 'disallow all'
commands.

@
XXXI- 17

The ddt&e field is the design, development, test, and
engineering costs associated with the item. It is an Itup
front" cost, paid only once no matter how many copies of the
item are to be produced. The ddt&e field is essential for any
kind of cost analysis in CAPS 1.0.

The quantity field is the total number of copies of the
item which will be produced.
this tends to be quite large, but for space programs it is
usually a relatively small number. Like the ddt&e field, the
quantity field is essential for CAPS 1.0 cost analyses.

For manufacturing applications

The unitcost field is the sum of all costs associated with
each new copy of an item which are not subject to a learning
curve. Its value is multiplied by the value in the quantity
field. The firstprd field is the first product cost of an
item. If this field is present in the data set, CAPS 1.0 will
use the learning curve cost function.

The two cost functions employed by CAPS 1.0 are:

1.

2.

The linear cost function is used if firstprd is not
present. With this model the cost associated with
a given item is

ddt&e + quantity*unitcost

The learning curve cost function is used if
firstprd is present. Here the cost associated with
a given item is

t n

i=1
ddt&e + quantity*unitcost + firstprd * Z i ,

where n = quantity and t = ln(L/lOO)/ln(2). Here L
is the learning curve parameter, adjustable in CAPS
via the 'learn' command.

THE 'LEARN' COMMAND

It is possible to communicate the value of the learning
curve parameter to CAPS' cost analysis component. This is a
percentage, usually around 85%, but the value varies with the
type of item being subjected to analysis. For example,

learn 90

sets the learning curve at 90%. CAPS will assume a learning
curve of 8 5 % until told to change that value.

XXXI- 18

If the learn command is used without an argument, CAPS
displays the current value of the learning curve parameter.

THE 'TAKE' COMMAND

The 'take' command allows the CAPS user to prepare a series
of commands and store them in an ASCII file. This avoids
having to reenter the same or nearly the same series of
commands each time s/he subjects the same data set to a cost
analysis. For example, in response to the command

>>take bicycles

CAPS reads the commands in the file 'bicycles.tak' and executes
th.3m one by one. The 'tak' extension is always assumed.

INTERPRETING THE COST ANALYSIS OUTPUT

Following is a typical CAPS 1.0 cost analysis:

>>cost.
Time required for an exhaustive analysis:
280 seconds.
CAPS 1.0 will find the optimum solution in approximately 3
seconds.
Proceed? y
Working
Item Replaces Replacement Cost Unique Cost

326.77 401.09

228.97 228.97

3389.18 4299.85

approximately

3 {1,2,3)

4 (4)

7 (5,6,7,8)

..
TOTALS
>>

3944.92 4929.91

The analysis above is f o r a data set of eight items. CAPS
begins by giving an estimate of the time which would be
required for an exhaustive analysis, followed by an estimate of
the time for it to do its own analysis. The second number is,
of course, never greater than the first. It is, however, quite
often much smaller because CAPS employs its knowledge about the
linear cost function and the learning curve cost function to
attempt to reduce the number of potential solutions to be
examined. (See Yeager, 1987a and 1988) The estimates are very
rough, and are based on IBM l?C/AT run times and the complexity
of the algorithms being used. 0

XX:KI- 19

In the examlle, CAPS recommends that only three of the
items, items 3 , 4 , and 7, be produced. Items 1 and 2 are to be
replaced by item 3 , and items 5, 6, and 8 by item 7. Item 4 is
a unique item. In making its recommendation, CAPS has followed
the feasibility constraints placed on the data by the user in
previous commands.

CAPS 1.0 displays the vvWorking....vv message to give the
user an indication of the progress of the analysis.
(' . ') represents three potential solutions (partitions)
examined.

Each dot

CAPS 1.0 cost figures are for comparison only. CAPS is
intended as a tool for Commonality Analysis, not for projection
of costs. It is, of course, true that the better the cost
estimates provided to the 'ddt&e', 'unitcost', and 'firstprd'
fields, the more accurate will be the recommendations of CAPS.

THE 'QUIT' COMMAND

The quit command returns control to DOS. Since no
provision is made in the CAPS 1.0 prototype for saving results
of an analysis to a file, the user is advised to use 'take'
files to collect all relevant commands pertaining to a given
data base, and to direct output to the printer during important
analyses.

CASE STUDY #1

The first case study is for a set of storage tanks, the
data for which appears in Table 1.
by size, and size is the only determinant for substitutability.
If the data is stored in file Ivtanksl.datvv, the following CAPS
dialogue yields a linear cost analysis.

The tanks appear in order

>>load tanks1
5 fields, 9 items.
Load successfully completed.
>>fields
ddt&e prod weight volume quantity
5 fields.
>>define unitcost as prod+weight+voLume
Definition successful.
>>add unitcost
Field successfully added.
>>for item=x allow itemx
36 new substitutions allowed.
>>cost

XXXI- 20

Time required for an exhaustive analysis: approximately 630
seconds.

seconds.
Proceed? y
Working
Item Replaces Replacement Cost Unique Cost

2 { 1 / 2)

CAPS 1.0 will find the opti,mum solution in approximately 1

129.78 171.86

636.64 680.48

297.85 297.85

9669.46 10049.56

5072.75 5072.75

CASE STUDY #2

The second case study also deals with storage tanks, but
here a distinction is made between 'liquid' and 'gas' tanks.
Specifically, we wish to enfo,rce that only liquid tanks replace
liquid tanks and that only gas tanks replace gas tanks. The
data is in table 2.

tank ddtCe
1 148.65
2 549.65
3 549.65
4 88.64
5 5 8 8 . 9 1
6 102.20
7 178.57
8 178.57
9 663.29

1 0 549.65
11 549.65
1 2 579.24
13 192.50
1 4 286.79
1 5 95.29
1 6 1 3 1 8 . 6 1
17 438.09

unitcost firstprd quantity
167.52 29.73 2

1302.46 109.93 2
1302.46 109.93 4

74.43 17.73 3
1451.32 117.78 2

93.08 20.44 4
223.29 3 5 . 7 1 1
223.29 3 5 . 7 1 1

1750.64 132.66 1
1302.46 109.93 2
1302.46 109.93 1
3787.29 115.85 4

671.48 38.50 4
1257.69 57.36 1 2

223.83 19.06 12
13767.10 263.72 5

2451.43 87.62 5

size liquid gas
2 1 0
5 1 0
5 1 0
0 1 0
6 1 0
1 1 0
3 1 0
3 1 0
7 1 0
5 1 0
5 1 0
8 1 0
1 0 1
4 1 0
0 0 1
9 1 0
2 0 1

Table 2. Liquid and gas storage tanks input file.

>>load tanks2

X X X I - 2 1

3 fields, 17 items.
Load successfully completed.
>>for liquid and size=x allow liquid and size>=x
98 new substitutions allowed.
>>for gas and size=x allow gas and size>=x
3 new substitutions allowed.
>>cost
Time required for an exhaustive analysis: approximately
605404800 seconds.
CAPS 1.0 will find the optimum solution in approximately 12
seconds.
Proceed? y
Working
Item Replaces Replacement Cost Unique Cost

1191.19 1413.83

12989.99 14805.17

7 {1,7,8)

2 (2,3,10,111

5

9

6

12

13

14

15

16

17

3709.44

2546.59

862.54

16115.97

3007.22

15851.97

2938.39

71217.19

13048.44

3709.44

2546.59

901.33

16115.97

3007.22

15851.97

2938.39

71217.19

15048.44

CASE STUDY #3

The final example relates to interface plates for the
modular racks used to organize work, storage, and living space
in space station modules. E ~ c h plate can accommodate zero or
more utility interfaces, chosen from the following set:

avionics
nominalpower
highpower

XXXI- 22

fire detection
dataImanagement
thermal-control
hygiene-water
nitrogen
potable-water
hygiene-waste

Each of the above is represented in the data set by a boolean
attribute of the same name. For a given interface plate, the
utility interface is present: on that plate if its corresponding
attribute has the value 1, and not present if that attribute
has the value 0. The major constraint in this example is that
no interface plate be allowed to substitute for another if the
latter contains an interface which the former does not have.
The following "take filet1 was prepared to define these
constraints for CAPS:

allow all
for avionics disallow not avionics
for nominaljower disallow not nominaljower
for high_power disallow not highjower
for fire-detection disallow not fire-detection
for data management disallow not data-management
for thermal control disallow not thermal-control
for hygieneIwater disa1l.o~ not hygiene-water
for nitrogen disallow not nitrogen
for potable water disa1l.o~ not potable-water
for hygieneIwaste disa1l.o~ not hygiene - waste

A relatively simple approach to cost is to count one monetary
unit for each interface incl.uded on a given plate. With this
approach we can define the 'unitcost' field by adding the
following lines to the 'take file':

define unitcost as avionics+norninal_power+highsower+
fire-detection+ data-nianagement+thermal-control+
hygiene water+nitrogen+ potable - water+hygiene-waste

add unitcost

The data used for the examp1.e is not reproduced here. It was
simply an arbitrary matrix of 1's and 0's with the 'ddt&e'
field set to 11 monetary units for each item. The following
analysis results:

X X X I - 23

>>status
Allowable substitutions:

1 -> (1,6,7,8)
2 -> (2,3,8)
3 -> (3)
4 -> (4)
5 -> (4,5,9,10,11)
6 --> (6)
7 --> (7,8)
8 -> (8)
9 -> (9)
10 --> (9,lO)
11 -> (11)

>>cost
Time required for an exhaustive analysis: approximately 17
seconds.
CAPS 1.0 will find the optimum solution in approximately 17
seconds.
Proceed? y
Working ..
Item Replaces Replacement Cost Unique Cost

38.00 54.00

26.00 43.00

51.00 80.00

TOTALS 115.00 177.00

.................................
1 {1,6,7)

2 (2,3,8)

5 (4,5,9,10,11)

...

The first two examples are nearly identical to the two case
studies used in Yeager, 1987a and 1988. The third is a
deliberately scaled down version of a study in Thomas, 1988.
The scaling down was necessary because of CAPS’ exhaustive
solution strategy. This strategy will be compromised in future
versions of CAPS, so that CAPS will be able to produce a
suboptimal solution to any size problem and optimal solutions
to those which have good properties, such as those given here.

XXXI- 24

CONCLUSIONS AND RECOMMENDATIONS

The CAPS 1.0 prototype was successfully designed, implemented,
and tested, and conclusively demonstrates the feasibility of an
intelligent software tool which can not only provide a more
sophisticated approach to the solution of commonality analysis
problems, but can also aid in structuring the analysis
procedure itself. Future development of CAPS will increase its
flexibility and functionality dramatically.

REFERENCES

MSFC. 1987. Commonality Analysis Study, User Manual for the
System Commonality Analysis Tool (SCAT), D483-10064, March
1987. Contract NAS8-36413, NASA George C. Marshall Space
Flight Center, Alabama.

THOMAS, L. D. 1988. Commonality Analysis Using Clustering
Methods, submitted to IEEE Transactions on Systems, Man,
and Cybernetics.

YEAGER, D . P. 1987a. Expert System Development for
Commonality Analysis in Space Programs, Final Report,
NASA/ASEE Summer Faculty Fellowship Program, pp. XXXV-i ff.
Contract NGT-01-008-021, NASA George C. Marshall Space
Flight Center, Alabama.

YEAGER, D. P. 1987b. Commonality Analysis as a Knowledge
Acquisition Problem, Proceedings of the Third Annual
Conference on Artificial Intelligence for Space
Applications, November 3, 1987.

YEAGER, D. P. 1988. A Formalization of the Commonality
Analysis Problem and Some Partial Solutions, submitted to
Mathematics of Operations Research.

XXXI- 25

